Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings
نویسندگان
چکیده
BACKGROUND Screening new lignocellulosic biomass pretreatments and advanced enzyme systems at process relevant conditions is a key factor in the development of economically viable lignocellulosic ethanol. Shake flasks, the reaction vessel commonly used for screening enzymatic saccharifications of cellulosic biomass, do not provide adequate mixing at high-solids concentrations when shaking is not supplemented with hand mixing. RESULTS We identified roller bottle reactors (RBRs) as laboratory-scale reaction vessels that can provide adequate mixing for enzymatic saccharifications at high-solids biomass loadings without any additional hand mixing. Using the RBRs, we developed a method for screening both pretreated biomass and enzyme systems at process-relevant conditions. RBRs were shown to be scalable between 125 mL and 2 L. Results from enzymatic saccharifications of five biomass pretreatments of different severities and two enzyme preparations suggest that this system will work well for a variety of biomass substrates and enzyme systems. A study of intermittent mixing regimes suggests that mass transfer limitations of enzymatic saccharifications at high-solids loadings are significant but can be mitigated with a relatively low amount of mixing input. CONCLUSION Effective initial mixing to promote good enzyme distribution and continued, but not necessarily continuous, mixing is necessary in order to facilitate high biomass conversion rates. The simplicity and robustness of the bench-scale RBR system, combined with its ability to accommodate numerous reaction vessels, will be useful in screening new biomass pretreatments and advanced enzyme systems at high-solids loadings.
منابع مشابه
Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass.
We introduce a new pretreatment called co-solvent-enhanced lignocellulosic fractionation (CELF) to reduce enzyme costs dramatically for high sugar yields from hemicellulose and cellulose, which is essential for the low-cost conversion of biomass to fuels. CELF employs THF miscible with aqueous dilute acid to obtain up to 95 % theoretical yield of glucose, xylose, and arabinose from corn stover ...
متن کاملScale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass
BACKGROUND Ionic liquid (IL) pretreatment is receiving significant attention as a potential process that enables fractionation of lignocellulosic biomass and produces high yields of fermentable sugars suitable for the production of renewable fuels. However, successful optimization and scale up of IL pretreatment involves challenges, such as high solids loading, biomass handling and transfer, wa...
متن کاملRecent Status on Enzymatic Saccharification of Lignocellulosic Biomass for Bioethanol Production
During the past decades, bioethanol becomes the best alternative to fossil fuels. Ethanol production by using edible feedstocks like sugarcane and grains became a point of concern in terms of the food supply and demand. Lignocellulosic biomass comprises non-edible feedstock opened a new method for the second-generation bioethanol production. Bioethanol production from lignocellulosic biomass is...
متن کاملCELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings†
A major challenge to economically produce ethanol from lignocellulosic biomass is to achieve industrially relevant ethanol titers (>50 g L) to control operating and capital costs for downstream ethanol operations while maintaining high ethanol yields. However, due to reduced fermentation effectiveness at high biomass solids loadings, excessive amounts of enzymes are typically required to obtain...
متن کاملHigh temperature pre-digestion of corn stover biomass for improved product yields
INTRODUCTION The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic en...
متن کامل